%I #12 Nov 09 2019 21:14:31
%S 1,2,3,4,6,8,10,13,17,21,27,32,39,47,56,67,78,91,107,124,143,165,187,
%T 214,244,276,312,351,394,443,496,553,616,684,761,843,932,1029,1133,
%U 1249,1374,1508,1652,1809,1978,2162,2358,2569,2796,3041,3306,3587,3889
%N Sequence satisfies T^2(a)=a, where T is defined below.
%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%F Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that parts = 0 mod 3 do not occur more than once.
%K nonn,eigen
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _Sean A. Irvine_, Nov 09 2019