login
Sequence satisfies T^2(a)=a, where T is defined below.
1

%I #14 Nov 09 2019 21:14:01

%S 1,2,3,4,6,8,10,13,17,21,26,33,39,48,59,68,82,97,113,133,155,179,207,

%T 240,273,312,358,404,459,521,584,659,742,829,927,1037,1153,1282,1428,

%U 1579,1748,1938,2134,2352,2595,2847,3127,3435,3757,4111,4500,4908,5351

%N Sequence satisfies T^2(a)=a, where T is defined below.

%D S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a027/A027585.java">Java program</a> (github)

%F Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that even parts do not occur more than once.

%K nonn,eigen

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Nov 09 2019