login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027475 a(n) = (n-1)*15^(n-2). 1
1, 30, 675, 13500, 253125, 4556250, 79734375, 1366875000, 23066015625, 384433593750, 6343154296875, 103797070312500, 1686702392578125, 27246730957031250, 437893890380859375, 7006302246093750000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Second column of A027467.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..200

Index entries for linear recurrences with constant coefficients, signature (30,-225).

FORMULA

Numerators of sequence a[ 2, n ] in (a[ i, j ])^4 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.

G.f.: x^2/(1 - 15*x)^2. - Vincenzo Librandi, Jul 16 2018

a(2) = 1, a(3) = 30; for n >= 4, a(n) = 30*a(n-1) - 225*a(n-2). - Jianing Song, Jul 16 2018

MAPLE

seq((n-1)*15^(n-2), n=2..50); # Muniru A Asiru, Jul 15 2018

MATHEMATICA

a[n_] := n 15^(n - 1); a[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)

CoefficientList[Series[x^2/(1 - 15 x)^2, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 16 2018 *)

PROG

(MAGMA) [(n-1)*15^(n-2): n in [2..50]]; // Vincenzo Librandi, Dec 29 2012

(GAP) List([2..50], n->(n-1)*15^(n-2)); # Muniru A Asiru, Jul 15 2018

CROSSREFS

Sequence in context: A075473 A051563 A152499 * A180801 A035520 A122186

Adjacent sequences:  A027472 A027473 A027474 * A027476 A027477 A027478

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

EXTENSIONS

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 29 08:26 EST 2020. Contains 332355 sequences. (Running on oeis4.)