login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027432 Related to sorting procedure studied by West: number of permutations that are both sorted (i.e. obtainable as output of the sorting procedure) and one-stack sortable. 2
1, 1, 1, 2, 4, 10, 25, 69, 192, 562, 1663, 5065, 15592, 48874, 154651, 495418, 1599816, 5212650, 17098590, 56473664, 187572584, 626430568, 2101977231, 7084963950, 23976649328, 81447876258, 277627821135, 949393445553, 3256266981128, 11199653726786, 38620292110925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Series reversion of g.f. A(x) is -A(-x) (if offset 1).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..500

M. Bousquet-Mélou, Sorted or sortable permutations, Discrete Math., 225 (2000), 25-50.

J. West, Sorting twice through a stack, Theoret. Comput. Sci. 117 (1993) 303-313.

Index entries for sequences related to sorting

FORMULA

G.f. is algebraic of degree 4.

If g.f. is A(x), y = x*A(x) satisfies (x^4 - 3*x^3 + 3*x^2 - x) + y * (4*x^3 + 29*x^2 - 7*x + 1) + y^2 * (6*x^2 - 29*x + 3) + y^3 * (4*x + 3) + y^4 = 0.

G.f. A(x) satisfies A(x) = x + B(x*A(x)) where B(x) is g.f. for A000260 (offset 1). - Michael Somos, Sep 07 2005

Recurrence: 3*(n-1)*(n+1)*(3*n+1)*(3*n+2)*(24*n^2 - n - 90)*a(n) = 2*(1680*n^6 - 1294*n^5 - 10977*n^4 + 16676*n^3 - 3843*n^2 - 2602*n + 720)*a(n-1) + 4*(768*n^6 - 3872*n^5 + 3560*n^4 + 6195*n^3 - 11498*n^2 + 6887*n - 2520)*a(n-2) - 32*n*(2*n-5)*(4*n-11)*(4*n-9)*(24*n^2 + 47*n - 67)*a(n-3). - Vaclav Kotesovec, Mar 18 2014

a(n) ~ c * (1/r)^n / (sqrt(Pi) * n^(5/2)), where r = (2*sqrt(7)-1)/16 = 0.268218913883... and c = sqrt((9653 + 3619*sqrt(7))/1944) = 3.14498539342675985580088726043277778... - Vaclav Kotesovec, Jul 01 2014

MATHEMATICA

max = 29; f[x_] = Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 1; y = x*f[x]; coes = CoefficientList[ Series[(x^4-3x^3+3x^2-x) + y*(4x^3+29x^2-7x+1) + y^2*(6x^2-29x+3) + y^3*(4x+3) + y^4, {x, 0, max}], x]; Table[a[n], {n, 0, max-1}] /. First[ Solve[ Thread[coes == 0]]] (* Jean-François Alcover, Nov 14 2011 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = subst( x - 3*(x^2 + y^2) + 7*x*y + 3*(x^3 - y^3) - 29*x*y*(x - y) - (x^4 + y^4) - 4*x*y*(x^2 + y^2) - 6*x^2*y^2, y, A)); polcoeff(A, n))}

CROSSREFS

Cf. A027361.

Sequence in context: A124344 A049125 A191768 * A032128 A052829 A001998

Adjacent sequences:  A027429 A027430 A027431 * A027433 A027434 A027435

KEYWORD

nonn,nice

AUTHOR

Mireille Bousquet-Mélou

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 19:20 EST 2016. Contains 278755 sequences.