login
Number of distinct products ijk with 1 <= i<j<k <= n.
27

%I #32 Oct 16 2023 23:29:29

%S 0,0,1,4,10,16,29,42,60,75,111,126,177,206,238,274,361,396,507,554,

%T 613,677,838,883,1004,1092,1198,1277,1529,1590,1881,1998,2133,2275,

%U 2432,2518,2921,3096,3278,3391,3884,4014,4563,4750,4938,5186,5840,5987,6422,6652

%N Number of distinct products ijk with 1 <= i<j<k <= n.

%D Amarnath Murthy, Generalization of partition function introducing Smarandache Factor Partitions, Smarandache Notions Journal, 1-2-3, Vol. 11, 2000.

%H David A. Corneth, <a href="/A027430/b027430.txt">Table of n, a(n) for n = 1..700</a> (first 200 terms by T. D. Noe)

%H Amarnath Murthy, <a href="http://vixra.org/pdf/1403.0647v1.pdf">Generalization of partition function introducing Smarandache Factor Partitions</a>, viXra:1403.0647, 2014.

%H David A. Corneth, <a href="/A027430/a027430_1.gp.txt">Pari program</a>

%F a(n) = A027429(n)-1. - _T. D. Noe_, Jan 16 2007

%F a(n) <= A000292(n - 2). - _David A. Corneth_, Jul 31 2018

%t nn = 50;

%t prod = Table[0, {1 + nn^3}];

%t a[1] = 0;

%t a[n_] := (Do[prod[[1 + i*j*k]] = 1, {i, 0, n}, {j, i+1, n}, {k, j+1, n}]; Count[Take[prod, 1 + n^3], 1] - 1);

%t Array[a, nn] (* _Jean-François Alcover_, Jul 31 2018, after _T. D. Noe_ *)

%o (Haskell)

%o import Data.List (nub)

%o a027430 n = length $ nub [i*j*k | k<-[3..n], j<-[2..k-1], i<-[1..j-1]]

%o -- _Reinhard Zumkeller_, Jan 01 2012

%o (PARI) See PARI link \\ _David A. Corneth_, Jul 31 2018

%o (Python)

%o def A027430(n): return len({i*j*k for i in range(1,n+1) for j in range(1,i) for k in range(1,j)}) # _Chai Wah Wu_, Oct 16 2023

%Y Cf. A000292, A027425, A088434, A100435, A100436.

%Y Number of terms in row n of A083507.

%Y Cf. A027429, A027428.

%K nonn

%O 1,4

%A _N. J. A. Sloane_.

%E Corrected by _David Wasserman_, Nov 18 2004