login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027356 Array read by rows: T(n,k) = number of partitions of n into distinct odd parts in which k is the greatest part, for k=1,2,...,n, n>=1. 6
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

First T(n,k) not 0 or 1 is T(17,9)=2, which counts 1+7+9 and 3+5+9. Row sums: A000700.

LINKS

Alois P. Heinz, Rows n = 1..361, flattened

Sean A. Irvine, Java program (github)

FORMULA

T(n, 1)=0 for all n; T(n, n)=1 for all odd n>1; and for n>=3, T(n, k)=0 if k is even, else T(n, k)=Sum{T(n-k, i): i=1, 2, ..., n-1} for k=2, 3, ..., n-1.

EXAMPLE

First 5 rows:

1

0 0

0 0 1

0 0 1 0

0 0 0 0 1

Row 40 with even-numbered terms deleted:

0 0 0 0 0 0 2 5 6 7 6 5 4 3 2 1 1 1 1;

E.g. final 2 counts these two partitions: 9+31 and 1+3+5+31.

MAPLE

b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(n=0, 1,

b(n, i-1) +(p-> `if`(p>n, 0, b(n-p, i-1)))((2*i-1))))

end:

T:= (n, k)-> `if`(k::even, 0, b(n-k, (k-1)/2)):

seq(seq(T(n, k), k=1..n), n=1..20); # Alois P. Heinz, Oct 28 2019

MATHEMATICA

b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == 0, 1, b[n, i - 1] + Function[p, If[p > n, 0, b[n - p, i - 1]]][2i - 1]]];

T [n_, k_] := If[EvenQ[k], 0, b[n - k, (k - 1)/2]];

Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

CROSSREFS

Cf. A000700.

T(4n+1,2n+1) gives A069910.

Sequence in context: A288220 A173856 A288926 * A181663 A247223 A186741

Adjacent sequences: A027353 A027354 A027355 * A027357 A027358 A027359

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, revised Jul 23 2004

EXTENSIONS

Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 06:50 EST 2022. Contains 358362 sequences. (Running on oeis4.)