This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027348 Number of partitions of n into distinct odd parts, the least being congruent to 3 mod 4. 1
 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 2, 2, 4, 4, 3, 4, 6, 5, 5, 6, 8, 8, 7, 9, 11, 11, 10, 12, 15, 16, 15, 18, 21, 21, 21, 24, 28, 30, 29, 33, 38, 39, 40, 44, 51, 53, 54, 60, 67, 70, 72, 79, 89, 93, 96, 105, 116, 121, 126, 136, 150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 REFERENCES Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41 G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 235, Entry 9.4.8. LINKS FORMULA G.f.: x^3 / (1 - x^4) + x^8 / ((1 - x^2) * (1 - x^8)) + x^15 / ((1 - x^2) * (1 - x^4) * (1 - x^12)) + x^24 / ((1 - x^2) * (1 - x^4) * (1 - x^6) * (1 - x^16)) + ... [Ramanujan]. - Michael Somos, Jul 21 2008 2 * a(n) = A143063(n) unless n=0. - Michael Somos, Jul 09 2015 EXAMPLE G.f. = x^3 + x^7 + x^8 + x^10 + x^11 + x^12 + x^14 + 2*x^15 + 2*x^16 + x^17 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (QHypergeometricPFQ[ {-1}, {-x^2}, x^2, -x^3] - 1) / 2, {x, 0, n}]; (* Michael Somos, Jun 25 2015 *) PROG (PARI) {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n+1) - 1, x^(k^2 + 2*k) / (1 - x^(4*k)) / prod(j=1, k-1, 1 - x^(2*j), 1 + O(x^(n + 1 - k^2 - 2*k)))), n))}; /* Michael Somos, Jul 21 2008 */ (PARI) {a(n) = my(A, B); if( n<1, 0, A = partitions(n); sum(k=1, length(A), if( ((B = A[k])[1])%4 == 3, prod(j=2, length(B), (B[j] > B[j-1]) && ((B[j] - B[j-1])%2 == 0)))))}; /* Michael Somos, Jul 21 2008 */ CROSSREFS Cf. A143063. Sequence in context: A216817 A263765 A270073 * A238325 A238885 A023566 Adjacent sequences:  A027345 A027346 A027347 * A027349 A027350 A027351 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 09:48 EDT 2019. Contains 326324 sequences. (Running on oeis4.)