login
Number of partitions of n that do not contain 10 as a part.
3

%I #17 Feb 18 2017 10:29:11

%S 1,1,2,3,5,7,11,15,22,30,41,55,75,98,130,169,220,282,363,460,585,736,

%T 925,1154,1440,1782,2205,2713,3333,4075,4977,6050,7347,8888,10735,

%U 12925,15541,18627,22297,26620,31734,37741,44825,53118,62865

%N Number of partitions of n that do not contain 10 as a part.

%F G.f.: (1-x^10) Product_{m>0} 1/(1-x^m).

%F a(n) = A000041(n)-A000041(n-10).

%F a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (6*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 10*Pi/(2*sqrt(6)))/sqrt(n) + (121/8 + 9/(2*Pi^2) + 19441*Pi^2/6912)/n). - _Vaclav Kotesovec_, Nov 04 2016

%p A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):

%p a:= n-> A41(n) -A41(n-10):

%p seq(a(n), n=0..50);

%Y 10th column of A175788. Cf. A000041, A027336, A027337-A027343.

%K nonn

%O 0,3

%A _Clark Kimberling_

%E More terms from _Benoit Cloitre_, Dec 10 2002

%E Edited by _Alois P. Heinz_, Dec 04 2010