login
A027339
Number of partitions of n that do not contain 5 as a part.
2
1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 79, 105, 134, 175, 220, 284, 355, 451, 561, 705, 870, 1085, 1331, 1644, 2008, 2463, 2990, 3646, 4406, 5339, 6425, 7745, 9279, 11135, 13288, 15872, 18875, 22455, 26606, 31537, 37246, 43990, 51796, 60975
OFFSET
0,3
FORMULA
G.f.: (1-x^5) Product_{m>0} 1/(1-x^m).
a(n) = A000041(n)-A000041(n-5).
a(n) ~ 5*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + 5*Pi/(2*sqrt(6)))/sqrt(n) + (61/8 + 9/(2*Pi^2) + 4921*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 04 2016
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(FreeQ[#, 5]&)], {n, 0, 50}] (* Harvey P. Dale, Jul 11 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff((1-x^5)/eta(x+x*O(x^n)), n))
CROSSREFS
Column 5 of A175788.
Sequence in context: A035983 A035993 A036004 * A039837 A039838 A064173
KEYWORD
nonn
EXTENSIONS
More terms from Benoit Cloitre, Dec 10 2002
STATUS
approved