login
a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.
4

%I #12 Apr 12 2022 04:23:11

%S 0,6,20,180,644,5502,20292,174456,654632,5673140,21528000,187675644,

%T 717800628,6284986554,24178479500,212408191568,820811282352,

%U 7229648901024,28037230854096,247468885359240,962488105227160,8510025522045036,33177800527098040,293772371437293720

%N a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.

%H G. C. Greubel, <a href="/A027268/b027268.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = Sum_{k=0..2n-1} A026536(n,k) * A026536(n,k+1)

%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];

%t Table[Sum[T[n, k]*T[n,k+1], {k,0,2*n-1}], {n,40}] (* _G. C. Greubel_, Apr 12 2022 *)

%o (SageMath)

%o @CachedFunction

%o def T(n, k): # A026536

%o if k < 0 or n < 0: return 0

%o elif k == 0 or k == 2*n: return 1

%o elif k == 1 or k == 2*n-1: return n//2

%o elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)

%o return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)

%o def A027268(n): return sum(T(n,k)*T(n,k+1) for k in (0..2*n-1))

%o [A027268(n) for n in (1..40)] # _G. C. Greubel_, Apr 12 2022

%Y Cf. A026536, A027267, A027269.

%K nonn

%O 1,2

%A _Clark Kimberling_

%E More terms from _Sean A. Irvine_, Oct 26 2019