login
A027077
a(n) = Sum_{k=n+1..2*n} T(n,k), T given by A027052.
2
1, 3, 8, 24, 71, 209, 612, 1784, 5189, 15081, 43838, 127528, 371395, 1082951, 3161866, 9243400, 27055153, 79280601, 232567194, 682905120, 2007104343, 5904004451, 17380510458, 51202600920, 150942696637, 445247984543
OFFSET
1,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k), k=n+1..2*n), n=1..30); # G. C. Greubel, Nov 06 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k], {k, n+1, 2*n}], {n, 1, 30}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k) for k in (n+1..2*n)) for n in (1..30)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A291613 A238126 A079121 * A291243 A153774 A052855
KEYWORD
nonn
EXTENSIONS
Offset changed by G. C. Greubel, Nov 06 2019
STATUS
approved