login
a(n) = T(2*n+1, n+3), T given by A027011.
1

%I #8 Feb 19 2016 15:02:03

%S 1,9,150,1085,5283,20495,69007,212020,613633,1708508,4640978,12414802,

%T 32903418,86731043,227905816,597838223,1566763325,4103989113,

%U 10747219441,28140274566,73676929931,192894712070,505012447636,1322149114676,3461442847524,9062189100301

%N a(n) = T(2*n+1, n+3), T given by A027011.

%H Colin Barker, <a href="/A027018/b027018.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (9,-34,71,-90,71,-34,9,-1).

%F G.f.: x^2*(1+103*x^2-30*x^3+69*x^4-73*x^5+34*x^6-9*x^7+x^8) / ((1-x)^6*(1-3*x+x^2)). - _Colin Barker_, Feb 19 2016

%o (PARI) Vec(x^2*(1+103*x^2-30*x^3+69*x^4-73*x^5+34*x^6-9*x^7+x^8)/((1-x)^6*(1-3*x+x^2)) + O(x^40)) \\ _Colin Barker_, Feb 19 2016

%K nonn,easy

%O 2,2

%A _Clark Kimberling_