The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026905 Partial sums of the partition numbers A000041. 38
 1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507, 683, 914, 1211, 1596, 2086, 2713, 3505, 4507, 5762, 7337, 9295, 11731, 14741, 18459, 23024, 28628, 35470, 43819, 53962, 66272, 81155, 99132, 120769, 146784, 177969, 215307 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, a(n) = number of sums S of positive integers satisfying S <= n. Equivalently, first differences give A000041. - Jacques ALARDET, Aug 04 2008, Aug 15 2008 For the partial sums of the partitions numbers of nonnegative integers A001477 see A000070. - Omar E. Pol, Nov 12 2011 Also number of parts in all regions of n that contain 1 as a part (Cf. A206437). - Omar E. Pol, Mar 11 2012 LINKS Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, Dynamics of network motifs, 2006. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 800 FORMULA a(n) = A000070(n) - 1, n >= 1. a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016 G.f.: -1/(1 - x) + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 25 2016 MAPLE a:=n->add(numbpart(k), k=1..n): seq(a(n), n=1..40); # Zerinvary Lajos, Jun 01 2008 MATHEMATICA Table[ Sum[ PartitionsP[k], {k, 1, n}], {n, 1, 45}] (* or: *) PartitionsP[Range[45]] // Accumulate (* Jean-François Alcover, Jun 19 2019 *) CROSSREFS Cf. A000041, A000070, A001477, A026906, A206437. Rows sums of A133737, A137633, A137679. Sequence in context: A014284 A118482 A281689 * A286272 A212147 A066778 Adjacent sequences:  A026902 A026903 A026904 * A026906 A026907 A026908 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Jun 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)