OFFSET
3,2
COMMENTS
Column k=8 of triangle A236830. - Philippe Deléham, Feb 02 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = 3..1000
FORMULA
G.f.: (x^3*C(x)^8)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
MATHEMATICA
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x, 0, 30}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
(Sage) a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved