This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026835 Triangular array read by rows: T(n,k) = number of partitions of n into distinct parts in which every part is >=k, for k=1,2,...,n. 5
 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 12, 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, 15, 8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 18, 10, 6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 22, 12, 7, 4, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS T(n,1)=A000009(n), T(n,2)=A025147(n) for n>1, T(n,3)=A025148(n) for n>2, T(n,4)=A025149(n) for n>3. A219922(n) = smallest number of row containing n. - Reinhard Zumkeller, Dec 01 2012 LINKS Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened FORMULA G.f.: Sum_{k>=1} (y^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 25 2003 PROG (Haskell) import Data.List (tails) a026835 n k = a026835_tabl !! (n-1) !! (k-1) a026835_row n = a026835_tabl !! (n-1) a026835_tabl = map    (\row -> map (p \$ last row) \$ init \$ tails row) a002260_tabl    where p 0      _ = 1          p _     [] = 0          p m (k:ks) = if m < k then 0 else p (m - k) ks + p m ks -- Reinhard Zumkeller, Dec 01 2012 CROSSREFS Cf. A026807. Cf. A002260, A060016. Sequence in context: A168508 A177994 A179285 * A117975 A143258 A027199 Adjacent sequences:  A026832 A026833 A026834 * A026836 A026837 A026838 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 14:18 EDT 2019. Contains 321497 sequences. (Running on oeis4.)