login
a(n) = least k such that if 1<=h<=n then T(n,k)>=T(n,h), T given by A008284.
2

%I #8 Jul 13 2015 22:39:56

%S 1,1,1,2,2,2,3,3,3,4,4,4,4,4,5,5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,

%T 9,9,9,9,9,10,10,10,10,10,10,10,11,11,11,11,11,11,11,12,12,12,12,12,

%U 12,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,16

%N a(n) = least k such that if 1<=h<=n then T(n,k)>=T(n,h), T given by A008284.

%t f[n_] := Block[{k = 1, mk = mx = 0}, While[k < n + 1, a = Length@ IntegerPartitions[n, {k}]; If[a > mx, mx = a; mk = k]; k++ ]; mk]; Array[f, 85] (* _Robert G. Wilson v_, Jul 20 2010 *)

%Y Max{T(n, k)} for 1<=k<=n is A002569.

%K nonn

%O 1,4

%A _Clark Kimberling_

%E More terms from _Robert G. Wilson v_, Jul 20 2010