This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026800 Number of partitions of n in which the least part is 7. 18


%S 0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,3,3,4,4,5,6,7,8,10,11,

%T 13,15,18,20,24,27,32,36,42,48,56,63,73,83,96,108,125,141,162,183,209,

%U 236,270,304,346,390,443,498,565,635,719,807,911,1022,1153,1291,1453,1628,1829,2045

%N Number of partitions of n in which the least part is 7.

%C Contribution by _Jason Kimberley_, Feb 03 2011: (Start)

%C a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth exactly 7 (all such graphs are simple). The integer i corresponds to the i-cycle; the addition of integers corresponds to the disconnected union of cycles.

%C By removing a single part of size 7, an A026800 partition of n becomes an A185327 partition of n - 7. (End)

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_eq_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g</a>

%F G.f.: x^7 * Product 1/(1-x^m); m=7..inf.

%F a(n) = p(n-7)-p(n-8)-p(n-9)+p(n-12)+2*p(n-14)-p(n-16)-p(n-17)-p(n-18)-p(n-19)+2*p(n-21)+p(n-23)-p(n-26)-p(n-27)+p(n-28) where p(n)=A000041(n) including the implicit p(n)=0 for negative n. [From _Shanzhen Gao_, Oct 28 2010] - offset corrected / made explicit by _Jason Kimberley_, Feb 03 2011.

%F a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^6 / (6*sqrt(3)*n^4). - _Vaclav Kotesovec_, Jun 02 2018

%e a(0)=0 because there does not exist a least part of the empty partition.

%e The a(7)=1 partition is 7.

%e The a(14)=1 partition is 7+7.

%e The a(15)=1 partition is 7+8.

%e .............................

%e The a(20)=1 partition is 7+13.

%e The a(21)=2 partitions are 7+7+7 and 7+14.

%o (MAGMA) p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;

%o A026800 := func< n | p(n-7)-p(n-8)-p(n-9)+p(n-12)+2*p(n-14)-p(n-16)- p(n-17)-p(n-18)-p(n-19)+2*p(n-21)+p(n-23)-p(n-26)-p(n-27)+p(n-28) >; // _Jason Kimberley_, Feb 03 2011

%Y Cf. A185327 (Mathematica code)

%Y Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).

%Y Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), this sequence (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - _Jason Kimberley_, Feb 03 2011

%K nonn,easy

%O 0,22

%A _Clark Kimberling_

%E More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 14:50 EST 2018. Contains 317208 sequences. (Running on oeis4.)