login
A026795
Expansion of 1/((1-2*x)*(1-6*x)*(1-9*x)*(1-10*x)).
1
1, 27, 475, 6915, 90571, 1110147, 13011355, 147722355, 1638222091, 17846324067, 191730867835, 2037261517395, 21455455896811, 224319716510787, 2331201129229915, 24104752246858035, 248186422724438731
OFFSET
0,2
FORMULA
a(n) = (875*10^n -972*9^n +126*6^n -2^n)/28. - R. J. Mathar, Jun 23 2013
E.g.f.: (875*exp(10*x) - 972*exp(9*x) + 126*exp(6*x) - exp(2*x))/28. - G. C. Greubel, Nov 02 2019
MAPLE
seq((875*10^n -972*9^n +126*6^n -2^n)/28, n=0..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
Table[(875*10^n -972*9^n +126*6^n -2^n)/28, {n, 0, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(PARI) vector(31, n, (875*10^(n-1) -972*9^(n-1) +126*6^(n-1) -2^(n-1))/28) \\ G. C. Greubel, Nov 02 2019
(Magma) [(875*10^n -972*9^n +126*6^n -2^n)/28: n in [0..30]]; // G. C. Greubel, Nov 02 2019
(Sage) [(875*10^n -972*9^n +126*6^n -2^n)/28 for n in (0..30)] # G. C. Greubel, Nov 02 2019
(GAP) List([0..30], n-> (875*10^n -972*9^n +126*6^n -2^n)/28); # G. C. Greubel, Nov 02 2019
CROSSREFS
Sequence in context: A028077 A028006 A028066 * A028114 A026727 A028048
KEYWORD
nonn
STATUS
approved