%I #13 Sep 08 2022 08:44:49
%S 1,27,477,7007,93093,1163799,13989949,163814559,1883880405,
%T 21393162791,240779316141,2692752875631,29976989988037,
%U 332620147754103,3681925234618653,40686711732853823,449042333942609589
%N Expansion of 1/((1-2*x)*(1-6*x)*(1-8*x)*(1-11*x)).
%H G. C. Greubel, <a href="/A026727/b026727.txt">Table of n, a(n) for n = 0..950</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (27, -252, 932, -1056).
%F a(n) = (-5*2^n + 729*6^n - 30*8^(n+2) + 11^(n+3))/135. _R. J. Mathar_, Jun 23 2013
%F E.g.f.: (-5*exp(2*x) +729*exp(6*x) -1920*exp(8*x) +1331*exp(11*x))/135. - _G. C. Greubel_, Jul 16 2019
%t CoefficientList[Series[1/((1-2x)(1-6x)(1-8x)(1-11x)),{x,0,30}],x] (* or *) LinearRecurrence[{27,-252,932,-1056},{1,27,477,7007},30] (* _Harvey P. Dale_, Dec 15 2014 *)
%o (PARI) vector(30, n, n--; (-5*2^n + 729*6^n - 30*8^(n+2) + 11^(n+3))/135) \\ _G. C. Greubel_, Jul 16 2019
%o (Magma) [(-5*2^n + 729*6^n - 30*8^(n+2) + 11^(n+3))/135: n in [0..30]]; // _G. C. Greubel_, Jul 16 2019
%o (Sage) [(-5*2^n + 729*6^n - 30*8^(n+2) + 11^(n+3))/135 for n in (0..30)] # _G. C. Greubel_, Jul 16 2019
%o (GAP) List([0..30], n-> (-5*2^n + 729*6^n - 30*8^(n+2) + 11^(n+3))/135) # _G. C. Greubel_, Jul 16 2019
%K nonn
%O 0,2
%A _N. J. A. Sloane_