login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026600 a(n) is the n-th letter of the infinite word generated from w(1)=1 inductively by w(n)=JUXTAPOSITION{w(n-1),w'(n-1),w"(n-1)}, where w(k) becomes w'(k) by the cyclic permutation 1->2->3->1 and w"(k) = (w')'(k). 16
1, 2, 3, 2, 3, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 1, 2, 3, 3, 1, 2, 1, 2, 3, 2, 3, 1, 2, 3, 1, 3, 1, 2, 1, 2, 3, 3, 1, 2, 1, 2, 3, 2, 3, 1, 1, 2, 3, 2, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 3, 2, 3, 1, 1, 2, 3, 2, 3, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 1, 2, 3, 2, 3, 1, 3, 1, 2, 1, 2, 3, 3, 1, 2, 1, 2, 3, 2, 3, 1, 1, 2, 3, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

Michael Gilleland, Some Self-Similar Integer Sequences

Index entries for sequences that are fixed points of mappings

FORMULA

a(A026601(n)) = 1.

a(A026602(n)) = 2.

a(A026603(n)) = 3. -Michael Somos, Sep 06 2008

EXAMPLE

1;

(123);

(123)(231)(312);

(123)(231)(312)(231)(312)(123)(312)(123)(231);

MATHEMATICA

Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2}}] &, {1}, 7] (* Robert G. Wilson v, Mar 08 2005 *)

PROG

(PARI) {a(n) = if( n<2, n>0, (a((n + 2)\ 3) + n + 1 )%3 + 1)} /* Michael Somos, Sep 06 2008 */

CROSSREFS

Equals A053838(n-1) + 1. Cf. A026601-A026614.

Sequence in context: A197262 A085032 A004549 * A106560 A263350 A202495

Adjacent sequences:  A026597 A026598 A026599 * A026601 A026602 A026603

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 17 16:05 EST 2017. Contains 296119 sequences.