login
a(n) = T(2*n, n), where T is given by A026584.
17

%I #12 Dec 13 2021 06:16:24

%S 1,1,5,19,69,341,1203,6336,22593,121483,438533,2381512,8677763,

%T 47419503,173984792,954961034,3522101709,19397198595,71831252031,

%U 396646918211,1473610012405,8154682794333,30376120747792,168394714422722,628648474795879,3490216221862041,13053833414221023,72566287730964469

%N a(n) = T(2*n, n), where T is given by A026584.

%H G. C. Greubel, <a href="/A026590/b026590.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A026584(n, n).

%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)

%t a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n]];

%t Table[a[n], {n, 0, 40}] (* _G. C. Greubel_, Dec 13 2021 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k): # T = A026584

%o if (k==0 or k==2*n): return 1

%o elif (k==1 or k==2*n-1): return (n//2)

%o else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)

%o [T(2*n, n) for n in (0..40)] # _G. C. Greubel_, Dec 13 2021

%Y Cf. A026584, A026585, A026587, A026589, A026591, A026592, A026593, A026594, A026595, A026596, A026597, A026598, A026599, A027282, A027283, A027284, A027285, A027286.

%K nonn

%O 0,3

%A _Clark Kimberling_

%E Terms a(19) onward from _G. C. Greubel_, Dec 13 2021