login
a(n) = T(n, n-1), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 1.
22

%I #18 Dec 20 2021 09:43:23

%S 1,1,4,6,19,33,98,180,526,990,2887,5502,16073,30863,90386,174456,

%T 512128,992304,2918954,5673140,16716998,32571858,96119927,187675644,

%U 554524660,1084649644,3208254571,6284986554,18607536319,36501029265

%N a(n) = T(n, n-1), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 1.

%H G. C. Greubel, <a href="/A026521/b026521.txt">Table of n, a(n) for n = 1..1000</a>

%H Veronika Irvine, Stephen Melczer, and Frank Ruskey, <a href="https://arxiv.org/abs/1804.08725">Vertically constrained Motzkin-like paths inspired by bobbin lace</a>, arXiv:1804.08725 [math.CO], 2018.

%F a(n) = A026519(n, n-1).

%F a(n) = A026537(n+1)/2.

%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)

%t Table[T[n, n-1], {n,40}] (* _G. C. Greubel_, Dec 19 2021 *)

%o (Sage)

%o @CachedFunction

%o def T(n,k): # T = A026552

%o if (k==0 or k==2*n): return 1

%o elif (k==1 or k==2*n-1): return (n+1)//2

%o elif (n%2==0): return T(n-1, k) + T(n-1, k-2)

%o else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)

%o [T(n,n-1) for n in (1..40)] # _G. C. Greubel_, Dec 19 2021

%Y Cf. A026519, A026520, A026522, A026523, A026524, A026525, A026526, A026527, A026528, A026529, A026530, A026531, A026533, A026534, A027262, A027263, A027264, A027265, A027266.

%Y Cf. A026537.

%K nonn

%O 1,3

%A _Clark Kimberling_