This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026374 Triangular array T read by rows: T(n,0)=T(n,n)=1 for all n >= 0, T(n,k)=T(n-1,k-1) + T(n-1,k) for odd n and 1<=k<=n-1, T(n,k)=T(n-1,k-1) + T(n-1,k) + T(n-2,k-1) for even n and 1<=k<=n-1. 18
 1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 7, 17, 17, 7, 1, 1, 9, 30, 45, 30, 9, 1, 1, 10, 39, 75, 75, 39, 10, 1, 1, 12, 58, 144, 195, 144, 58, 12, 1, 1, 13, 70, 202, 339, 339, 202, 70, 13, 1, 1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(n,k) is number of lattice paths from (0,0) to (n,n-2k) using steps U=(1,1), D=(1,-1) and, at levels ...-4,-2,0,2,4,..., also H=(2,0). Example: T(4,1)=6 because we have the following paths from (0,0) to (4,2): UUUD, UUH, UUDU, UDUU, HUU and DUUU. Row sums yield A026383. Column 1 is A032766, column 2 is A026381, column 3 is A026382. - Emeric Deutsch, Jan 25 2004 LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5. FORMULA T(n, k) = number of integer strings s(0), ..., s(n) such that s(0)=0, s(n)=n-2k, where, for 1<=i<=n, s(i) is even if i is even and |s(i)-s(i-1)|<=1. T(2n, k)=sum(3^(2j-k)*binomial(n, j)binomial(j, k-j), j=ceil(k/2)..k); T(2n+1, k)=T(2n, k-1)+T(2n, k). G.f.=(1+z+tz)/[1-(1+3t+t^2)z^2]=1+(1+t)z+(1+3t+t^2)z^2+... . Generating polynomial for row 2n is (1+3t+t^2)^n and for row 2n+1 it is (1+t)(1+3t+t^2)^n. - Emeric Deutsch, Jan 25 2004 T(2n, k)=sum(3^(2j-k)*binomial(n, j)*binomial(j, k-j), j=ceil(k/2)..k); T(2n+1, k)=T(2n, k-1)+T(2n, k). - Emeric Deutsch, Jan 30 2004 w=3:\q p(x,n)=If[Mod[n, 2] == 0, (x + 1)*p(x, n - 1), (x^2 + w*x + 1)^Floor[n/2]. [Roger L. Bagula and Gary W. Adamson, Dec 04 2009] EXAMPLE Triangle starts: {1}, {1, 1}, {1, 3, 1}, {1, 4, 4, 1}, {1, 6, 11, 6, 1}, {1, 7, 17, 17, 7, 1}, {1, 9, 30, 45, 30, 9, 1}, {1, 10, 39, 75, 75, 39, 10, 1}, {1, 12, 58, 144, 195, 144, 58, 12, 1}, {1, 13, 70, 202, 339, 339, 202, 70, 13, 1}, {1, 15, 95, 330, 685, 873, 685, 330, 95, 15, 1}, {1, 16, 110, 425, 1015, 1558, 1558, 1015, 425, 110, 16, 1} (End) MATHEMATICA w = 0; p[x, 1] := 1; p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + w*x + 1)^Floor[n/2]] a = Table[CoefficientList[p[x, n], x], {n, 1, 12}] Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Dec 04 2009 *) PROG (Haskell) a026374 n k = a026374_tabl !! n !! k a026374_row n = a026374_tabl !! n a026374_tabl = [1] : map fst (map snd \$ iterate f (1, ([1, 1], [1]))) where    f (0, (us, vs)) = (1, (zipWith (+) ([0] ++ us) (us ++ [0]), us))    f (1, (us, vs)) = (0, (zipWith (+) ([0] ++ vs ++ [0]) \$                              zipWith (+) ([0] ++ us) (us ++ [0]), us)) -- Reinhard Zumkeller, Feb 22 2014 CROSSREFS Cf. A026383, A051159,A169623, A007318 Cf. A026375 (central terms). Sequence in context: A136482 A026648 A026747 * A174032 A180979 A102716 Adjacent sequences:  A026371 A026372 A026373 * A026375 A026376 A026377 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 00:28 EST 2019. Contains 320329 sequences. (Running on oeis4.)