login
a(n) = greatest k such that s(k) = n, where s = A026362.
5

%I #11 Apr 30 2017 11:29:50

%S 2,7,10,13,16,21,24,29,32,37,40,45,48,51,54,59,62,67,70,73,76,81,84,

%T 89,92,95,98,103,106,111,114,117,120,125,128,133,136,141,144,149,152,

%U 155,158,163,166,171,174,177,180,185,188,193,196

%N a(n) = greatest k such that s(k) = n, where s = A026362.

%C Complement of A026363. Positions of 0 in the fixed point of the morphism 0->11, 1->101; see A285430. Conjecture: -1 < n*r - a(n) < 4 for n>=1, where r = 2 + sqrt(3). - _Clark Kimberling_, Apr 28 2017

%H Clark Kimberling, <a href="/A026364/b026364.txt">Table of n, a(n) for n = 1..10000</a>

%t s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0, 1}}] &, {0}, 13] (* A285430 *)

%t Flatten[Position[s, 0]] (* A026364 *)

%t Flatten[Position[s, 1]] (* A026363 *)

%t (* _Clark Kimberling_, Apr 28 2017 *)

%Y Cf. A026363, A285430.

%K nonn

%O 1,1

%A _Clark Kimberling_