0,2

Let f(1)=1, f(2)=q and f(k+2) = f(k+1)+f(k)-n; a(n) is the smallest positive integer q such that f(k) -> infinity as k -> infinity. - Benoit Cloitre, Aug 04 2002

Table of n, a(n) for n=0..68.

J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences

For n>0, a(n) = floor((n-1)*phi) + 2, where phi=(1+sqrt(5))/2.

Recurrences: a(n+1) = a(n)+(3 + sign(phi*n-a(n)))/2 for n>=0. Also a(n+1) = a(n) + 1 + A005614(n-2) for n>=2. - Benoit Cloitre, Aug 04 2002

Cf. A000201, A005614, A026351. Different from A007067.

Sequence in context: A047448 A260396 A029921 * A099267 A007067 A186322

Adjacent sequences: A026352 A026353 A026354 * A026356 A026357 A026358

nonn,easy

Clark Kimberling

approved