login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026148 Irregular triangular array T read by rows: T(n,0) = 1 for i >= 0, T(1,1) = 1,T(2,1) = 1, T(2,2) = 2, T(2,3) = 1, T(2,4) = 1 and for n >= 3, T(n,1) = n-1,  T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k=2,...,n+1, and T(n, k+2) = T(n-1, k) + T(n-1, k+1). 25
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 4, 4, 2, 1, 3, 7, 10, 12, 10, 6, 1, 4, 11, 20, 29, 32, 28, 16, 1, 5, 16, 35, 60, 81, 89, 76, 44, 1, 6, 22, 56, 111, 176, 230, 246, 209, 120, 1, 7, 29, 84, 189, 343, 517, 652, 685, 575, 329, 1, 8, 37, 120, 302, 616, 1049, 1512, 1854, 1912, 1589, 904, 1, 9, 46, 165 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..5000

EXAMPLE

First 7 rows:

  1

  1  1

  1  1  2  1  1

  1  2  4  4  4  2

  1  3  7 10 12 10  6

  1  4 11 20 29 32 28 l6

  1  5 16 35 60 81 89 76 44

MATHEMATICA

z = 12; t[n_, 0] = 1; t[1, 1] = 1; t[2, 2] = 2; t[2, 3] = 1; t[2, 4] = 1; t[n_, 1] := t[n, 1] = n - 1; t[n_, k_] := t[n, k] = Which[2 <= k <= n + 1, t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], k == n + 2, t[n - 1, k - 2] + t[n - 1, k - 1]]; u = Join[{{1}}, {{1, 1}}, Table[t[n, k], {n, 2, z}, {k, 0, n + 2}]]; TableForm[u] (* A026148 array *)

Flatten[u] (* A026148 sequence *)

CROSSREFS

Sequence in context: A188919 A026519 A025177 * A117211 A246576 A215894

Adjacent sequences:  A026145 A026146 A026147 * A026149 A026150 A026151

KEYWORD

nonn,tabf

AUTHOR

Clark Kimberling

EXTENSIONS

Definition clarified, Example and Mathematica program added by Clark Kimberling, Aug 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 13:08 EDT 2019. Contains 321330 sequences. (Running on oeis4.)