The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026082 Irregular triangular array T read by rows: T(n,k) = C(n,k) for k=0..n for n = 0,1,2,3. For n >= 4, T(n,0) = T(n,2n)=1, T(n,1) = T(n,2n-1) = n - 3, T(4,2) = 4, T(4,3) = 3, T(4,4) = 6; T(4,5) = 3, T(4,6)=4; for n >= 5, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k=2..2n-2. 21
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 5, 18, 45, 93, 156, 226, 278, 300, 278, 226, 156, 93, 45, 18, 5, 1, 1, 6, 24, 68, 156, 294, 475, 660, 804 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For n >= 4, T(n,k) = number of strings s(0)..s(n) such that s(n) = n - k, s(0) = 0, |s(i)-s(i-1)| = 1 for i=1,2,3 and |s(i)-s(i-1)| <= 1 for i >= 4. LINKS Clark Kimberling, Rows 0..100, flattened FORMULA G.f.: (1-y*z)^3 / (1-z*(1+y+y^2)). EXAMPLE First 6 rows: 1 1 1 1 2 1 1 3 3 1 1 1 4 3 6 3 4 1 1 1 2 6 8 12 12 13 8 6 2 1 MAPLE A026082 := proc(n, k) option remember; if n < 0 or k < 0 or k > 2*n then 0 ; elif n <= 3 then binomial(n, k) ; elif n = 4 then op(k+1, [1, 1, 4, 3, 6, 3, 4, 1, 1]) ; elif k =0 or k=2*n then 1 ; else procname(n-1, k-2)+procname(n-1, k-1)+procname(n-1, k) ; end if; end proc: # R. J. Mathar, Jun 23 2013 MATHEMATICA z = 15; t[n_, 0] := 1 /; n >= 4; t[n_, 1] := n - 3 /; n >= 4; t[4, 2] = 4; t[4, 3] = 3; t[4, 4] = 6; t[4, 5] = 3; t[4, 6] = 4; t[n_, k_] := t[n, k] = Which[0 <= k <= n && 0 <= n <= 3, Binomial[n, k], n >= 4 && k == 2 n, 1, k == 2 n - 1, n - 3, 2 <= k <= 2 n - 2, t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; s = Table[Binomial[n, k], {n, 0, 3}, {k, 0, n}]; u = Join[s, Table[t[n, k], {n, 4, z}, {k, 0, 2 n}]]; TableForm[u] (* A026082 array *) Flatten[u] (* A026082 sequence *) CROSSREFS First differences of A024996. Sequence in context: A307116 A212626 A090402 * A117185 A129181 A157694 Adjacent sequences: A026079 A026080 A026081 * A026083 A026084 A026085 KEYWORD nonn,tabf AUTHOR EXTENSIONS Updated by Clark Kimberling, Aug 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 17:25 EST 2022. Contains 358668 sequences. (Running on oeis4.)