login
A025990
Expansion of 1/((1-2x)(1-5x)(1-6x)(1-11x)).
1
1, 24, 381, 5096, 62517, 731640, 8337757, 93583752, 1041282693, 11528533016, 127276678893, 1402901740968, 15449475687829, 170051606288952, 1871222084030589, 20587420276057544, 226485741460066725, 2491489138167004248, 27407262770303269645
OFFSET
0,2
FORMULA
G.f.: 1/((1-2*x)*(1-5*x)*(1-6*x)*(1-11*x)).
a(n) = (1/270)*(1331*11^n - 2916*6^n + 1875*5^n - 20*2^n). - R. J. Mathar, Jun 20 2013
a(n) = 24*a(n-1) - 195*a(n-2) + 632*a(n-3) - 660*a(n-4) for n > 3. - Wesley Ivan Hurt, Jan 05 2017
MAPLE
A025990:=n->(1/270)*(1331*11^n - 2916*6^n + 1875*5^n - 20*2^n): seq(A025990(n), n=0..30); # Wesley Ivan Hurt, Jan 05 2017
MATHEMATICA
CoefficientList[Series[1/((1 - 2 x) (1 - 5 x) (1 - 6 x) (1 - 11 x)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jan 05 2017 *)
Table[(1/270)*(1331*11^n - 2916*6^n + 1875*5^n - 20*2^n), {n, 0, 50}] (* G. C. Greubel, Jan 05 2017 *)
PROG
(PARI) Vec(1/((1-2*x)*(1-5*x)*(1-6*x)*(1-11*x)) + O(x^50)) \\ G. C. Greubel, Jan 05 2017
(Magma) [(1/270)*(1331*11^n - 2916*6^n + 1875*5^n - 20*2^n) : n in [0..30]]; // Wesley Ivan Hurt, Jan 05 2017
CROSSREFS
Sequence in context: A028036 A025977 A023951 * A022565 A025974 A059157
KEYWORD
nonn,easy
STATUS
approved