login
A025974
Expansion of 1/((1-2x)(1-4x)(1-7x)(1-11x)).
0
1, 24, 383, 5166, 63993, 756108, 8690611, 98243322, 1099333565, 12223792152, 135381670359, 1495646457318, 16497281164417, 181786417955556, 2001865410394427, 22036025351972754, 242504828325007749
OFFSET
0,2
FORMULA
a(n) = -4*2^n/45 + 32*4^n/21 - 343*7^n/60 + 1331*11^n/252. - R. J. Mathar, Jun 20 2013
From Wesley Ivan Hurt, Jun 26 2022: (Start)
G.f.: 1/((1-2*x)*(1-4*x)*(1-7*x)*(1-11*x)).
a(n) = 24*a(n-1) - 193*a(n-2) + 606*a(n-3) - 616*a(n-4). (End)
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-4x)(1-7x)(1-11x)), {x, 0, 20}], x] (* Harvey P. Dale, Apr 05 2021 *)
CROSSREFS
Sequence in context: A023951 A025990 A022565 * A059157 A228406 A087292
KEYWORD
nonn,easy
STATUS
approved