login
A025936
Expansion of g.f. 1/((1-2*x)*(1-3*x)*(1-5*x)*(1-12*x)).
0
1, 22, 333, 4406, 55133, 673566, 8144701, 98052262, 1178225565, 14146756910, 169801508669, 2037820760118, 24454863987997, 293463446955454, 3521586773279037, 42259168371397574, 507110656046025629
OFFSET
0,2
FORMULA
a(n) = 22*a(n-1)-151*a(n-2)+ 402*a(n-3)- 360*a(n-4), n>3. - Harvey P. Dale, May 07 2012
a(n) = 96*12^n/35 +3^(n+1)/2 -2^(n+2)/15 -5^(n+3)/42. - R. J. Mathar, May 22 2013
E.g.f.: exp(2*x)*(576*exp(10*x) - 625*exp(3*x) + 315*exp(x) - 56)/210. - Stefano Spezia, Oct 28 2023
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-3x)(1-5x)(1-12x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{22, -151, 402, -360}, {1, 22, 333, 4406}, 30] (* Harvey P. Dale, May 07 2012 *)
CROSSREFS
Sequence in context: A258006 A309654 A019854 * A369132 A158849 A048376
KEYWORD
nonn,easy
STATUS
approved