login
A025927
Expansion of 1/((1-2x)(1-3x)(1-4x)(1-10x)).
0
1, 19, 245, 2735, 28701, 293079, 2957125, 29682895, 297294701, 2974868039, 29756539605, 297597360255, 2976103045501, 29761552993399, 297617634403685, 2976184804896815, 29761882021417101, 297618956491125159
OFFSET
0,2
FORMULA
a(n) = 19*a(n-1) - 116*a(n-2) + 284*a(n-3) - 240*a(n-4), with a(0)=1, a(1)=19, a(2)=245, a(3)=2735. [Harvey P. Dale, Oct 18 2011]
a(n) = (10^(n+3) - 7*4^(n+4) + 16*3^(n+4) - 21*2^(n+3))/336. - Yahia Kahloune, May 19 2013
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-3x)(1-4x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{19, -116, 284, -240}, {1, 19, 245, 2735}, 31] (* Harvey P. Dale, Oct 18 2011 *)
PROG
(PARI) Vec((-4560*x^3 + 5156*x^2 - 1920*x + 245)/(240*x^4 - 284*x^3 + 116*x^2 - 19*x + 1)+O(x^99)) \\ Charles R Greathouse IV, May 20 2013
CROSSREFS
Sequence in context: A019783 A021504 A019512 * A224180 A318194 A019443
KEYWORD
nonn,easy
AUTHOR
STATUS
approved