login
A025914
Expansion of 1/((1-x^7)(1-x^9)(1-x^12)).
0
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 4, 3, 5, 4, 3, 5, 4, 4, 5, 5, 4, 6, 5, 4, 6, 5, 5, 6, 6
OFFSET
0,22
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=1, a(8)=0, a(9)=1, a(10)=0, a(11)=0, a(12)=1, a(13)=0, a(14)=1, a(15)=0, a(16)=1, a(17)=0, a(18)=1, a(19)=1, a(20)=0, a(21)=2, a(22)=0, a(23)=1, a(24)=1, a(25)=1, a(26)=1, a(27)=1, a(n)=a(n-7)+a(n-9)+a(n-12)-a(n-16)-a(n-19)-a(n-21)+a(n-28). - Harvey P. Dale, Dec 19 2012
MATHEMATICA
CoefficientList[ Series[1/((1-x^7)(1-x^9)(1-x^12)), {x, 0, 120}], x] (* or *)
LinearRecurrence[ {0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1}, 121] (* Harvey P. Dale, Dec 19 2012 *)
CROSSREFS
Sequence in context: A203949 A070200 A359833 * A376631 A284977 A025916
KEYWORD
nonn
AUTHOR
STATUS
approved