login
A025904
Expansion of 1/((1-x^6)*(1-x^9)*(1-x^10)).
2
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 2, 2, 3, 3, 1, 4, 2, 2, 4, 4, 2, 5, 3, 3, 4, 4, 2, 6, 4, 4, 5, 5, 3, 7, 4, 4, 6, 6, 4, 8, 5, 5, 7, 7, 4, 9, 6, 6, 8, 8, 5, 10, 7
OFFSET
0,19
COMMENTS
a(n) is the number of partitions of n into parts 6, 9, and 10. - Michel Marcus, Jan 24 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,0,0,1,1,0,0,0,0,-1,-1,0,0,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^6)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* Harvey P. Dale, Jun 09 2019 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^9)*(1-x^10)) )); // G. C. Greubel, Jan 23 2024
(SageMath)
def A025904_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^9)*(1-x^10)) ).list()
A025904_list(100) # G. C. Greubel, Jan 23 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved