login
A025884
Expansion of 1/((1-x^5)*(1-x^7)*(1-x^10)).
5
1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 3, 1, 2, 4, 2, 3, 1, 3, 5, 2, 4, 2, 3, 6, 3, 5, 2, 4, 7, 3, 6, 3, 5, 8, 4, 7, 3, 6, 9, 5, 8, 4, 7, 10, 6, 9, 5, 8, 11, 7, 10, 6, 9, 13, 8, 11, 7, 10, 14, 9, 13
OFFSET
0,11
COMMENTS
a(n) is the number of partitions of n into parts 5, 7, and 10. - Joerg Arndt, Nov 19 2022
LINKS
Index entries for linear recurrences with constant coefficients,signature (0,0,0,0,1,0,1,0,0,1,0,-1,0,0,-1,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^10)), {x, 0, 80}], x] (* Harvey P. Dale, Jan 29 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^5)*(1-x^7)*(1-x^10)))); // Vincenzo Librandi, Jan 30 2020
(SageMath)
def A025884_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^7)*(1-x^10)) ).list()
A025884_list(90) # G. C. Greubel, Nov 18 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved