login
A025883
Expansion of 1/((1-x^5)*(1-x^7)*(1-x^9)).
5
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 11, 10, 11, 11, 11, 12, 11
OFFSET
0,15
COMMENTS
a(n) is the number of partitions of n into parts 5, 7, and 9. - Joerg Arndt, Nov 19 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,1,0,1,0,0,-1,0,-1,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^9)), {x, 0, 100}], x] (* or *)
LinearRecurrence[{0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 2, 1}, 100] (* Harvey P. Dale, Jun 24 2021 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^7)*(1-x^9)) )); // G. C. Greubel, Nov 18 2022
(SageMath)
def A025883_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^7)*(1-x^9)) ).list()
A025883_list(90) # G. C. Greubel, Nov 18 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved