login
A025877
Expansion of 1/((1-x^5)*(1-x^6)*(1-x^8)).
6
1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 6, 5, 6, 5, 6, 6, 7, 6, 8, 6, 8, 7, 8, 8, 9, 8, 10, 8, 10, 9, 11, 10, 11, 10, 12, 11, 13, 11, 13, 12, 14, 13, 15, 13
OFFSET
0,17
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1,0,1,0,0,-1,0,-1,-1,0,0,0,0,1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=1, a(6)=1, a(7)=0, a(8)=1, a(9)=0, a(10)=1, a(11)=1, a(12)=1, a(13)=1, a(14)=1, a(15)=1, a(16)=2, a(17)=1, a(18)=2, a(n)=a(n-5)+a(n-6)+a(n-8)-a(n-11)-a(n-13)-a(n-14)+ a(n-19). - Harvey P. Dale, Feb 01 2015
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^6)(1-x^8)), {x, 0, 100}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 1, 1, 0, 1, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2}, 100] (* Harvey P. Dale, Feb 01 2015 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 80); Coefficients(R!( 1/((1-x^5)*(1-x^6)*(1-x^8)) )); // G. C. Greubel, Nov 17 2022
(SageMath)
def A025877_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^6)*(1-x^8)) ).list()
A025877_list(80) # G. C. Greubel, Nov 17 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved