login
A025875
Expansion of 1/((1-x^4)*(1-x^11)*(1-x^12)).
2
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 5, 2, 3, 4, 6, 2, 3, 4, 6, 2, 3, 5, 7, 3, 4, 6, 8, 3, 4, 6, 8, 3, 5, 7, 9, 4, 6, 8, 10, 4, 6, 8, 10, 5, 7, 9
OFFSET
0,13
COMMENTS
a(n) is the number of partitions of n into parts 4, 11, and 12. - Joerg Arndt, Apr 29 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,0,0,0,0,0,1,1,0,0,-1,-1,0,0,0,0,0,0,-1,0,0,0,1).
FORMULA
G.f.: 1/((1-x^4)(1-x^11)(1-x^12)).
MATHEMATICA
CoefficientList[Series[1/((1 - x^4) (1 - x^11) (1 - x^12)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Apr 28 2017 *)
LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 2, 3, 0, 1}, 100] (* Harvey P. Dale, May 05 2018 *)
PROG
(PARI) Vec(1/((1-x^4)*(1-x^11)*(1-x^12))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Sequence in context: A357637 A130731 A287240 * A026840 A357648 A025873
KEYWORD
nonn,easy
STATUS
approved