login
A025874
Expansion of 1/((1-x^4)*(1-x^9)*(1-x^12)).
0
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 3, 2, 1, 1, 3, 2, 2, 1, 3, 3, 2, 1, 5, 3, 2, 2, 5, 3, 3, 2, 5, 5, 3, 2, 7, 5, 3, 3, 7, 5, 5, 3, 7, 7, 5, 3, 9, 7, 5, 5, 9, 7, 7, 5, 9, 9, 7, 5, 12, 9, 7, 7, 12, 9, 9, 7
OFFSET
0,13
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,0,0,0,1,0,0,1,-1,0,0,-1,0,0,0,0,-1,0,0,0,1).
FORMULA
G.f.: 1/((1-x^4)*(1-x^9)*(1-x^12)).
a(n) = a(n-4) + a(n-9) + a(n-12) - a(n-13) - a(n-16) - a(n-21) + a(n-25). - Wesley Ivan Hurt, May 26 2024
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^9)(1-x^12)), {x, 0, 90}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 3}, 90] (* Harvey P. Dale, Aug 12 2018 *)
PROG
(PARI) Vec(1/((1-x^4)*(1-x^9)*(1-x^12)) + O(x^90)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Sequence in context: A291904 A249808 A258453 * A256012 A332040 A263251
KEYWORD
nonn
STATUS
approved