login
Expansion of 1/((1-x^3)(1-x^9)(1-x^11)).
0

%I #7 Jan 20 2024 17:35:59

%S 1,0,0,1,0,0,1,0,0,2,0,1,2,0,1,2,0,1,3,0,2,3,1,2,3,1,2,4,1,3,4,2,3,5,

%T 2,3,6,2,4,6,3,4,7,3,5,8,3,6,8,4,6,9,4,7,10,5,8,10,6,8,11,6,9,12,7,10,

%U 13,8,10,14,8,11,15,9,12,16

%N Expansion of 1/((1-x^3)(1-x^9)(1-x^11)).

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,0,0,0,0,1,0,1,-1,0,-1,0,0,0,0,0,-1,0,0,1).

%F G.f.: 1/((1-x^3)*(1-x^9)*(1-x^11)).

%F a(n) = a(n-3) + a(n-9) + a(n-11) - a(n-12) - a(n-14) - a(n-20) + a(n-23). - _Wesley Ivan Hurt_, Jan 20 2024

%t CoefficientList[Series[1/((1-x^3)(1-x^9)(1-x^11)),{x,0,80}],x] (* or *) LinearRecurrence[ {0,0,1,0,0,0,0,0,1,0,1,-1,0,-1,0,0,0,0,0,-1,0,0,1},{1,0,0,1,0,0,1,0,0,2,0,1,2,0,1,2,0,1,3,0,2,3,1},80] (* _Harvey P. Dale_, Nov 07 2022 *)

%K nonn

%O 0,10

%A _N. J. A. Sloane_.