login
A025775
Expansion of 1/((1-x)(1-x^4)(1-x^11)).
0
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, and 11. - Joerg Arndt, May 05 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1).
FORMULA
a(n) = floor((n^2+16*n+90+22*cos(n*Pi/2))/88). - Tani Akinari, May 03 2014
a(n) = +a(n-1) +a(n-4) -a(n-5) +a(n-11) -a(n-12) -a(n-15) +a(n-16). - R. J. Mathar, Aug 21 2014
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - x^4) (1 - x^11)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Apr 11 2017 *)
LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1}, {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6}, 90] (* Harvey P. Dale, Aug 23 2024 *)
PROG
(PARI) Vec( 1/((1-x)*(1-x^4)*(1-x^11)) +O(x^66) ) \\ Joerg Arndt, May 05 2014
CROSSREFS
Sequence in context: A035435 A169992 A373535 * A169993 A325620 A270433
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved