|
|
A025620
|
|
Numbers of form 4^i*9^j, with i, j >= 0.
|
|
4
|
|
|
1, 4, 9, 16, 36, 64, 81, 144, 256, 324, 576, 729, 1024, 1296, 2304, 2916, 4096, 5184, 6561, 9216, 11664, 16384, 20736, 26244, 36864, 46656, 59049, 65536, 82944, 104976, 147456, 186624, 236196, 262144, 331776, 419904, 531441, 589824, 746496, 944784
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers of form 2^(2*i)*3^(2*j)) or 3-smooth squares: intersection of A003586 and A000290; A001221(a(n)) <= 2; A001222(a(n)) is even; A006530(a(n)) <= 3. - Reinhard Zumkeller, May 16 2015
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
PROG
|
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a025620 n = a025620_list !! (n-1)
a025620_list = f $ singleton 1 where
f s = y : f (insert (4 * y) $ insert (9 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 9), N=9^n; while(N<=lim, listput(v, N); N<<=2)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
|
|
CROSSREFS
|
Cf. A003586, A000290, A001221, A001222, A006530, subsequence of A036667.
Sequence in context: A000548 A256944 A106575 * A117218 A226076 A272711
Adjacent sequences: A025617 A025618 A025619 * A025621 A025622 A025623
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|