login
A025611
Numbers of form 2^i*9^j, with i, j >= 0.
3
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 512, 576, 648, 729, 1024, 1152, 1296, 1458, 2048, 2304, 2592, 2916, 4096, 4608, 5184, 5832, 6561, 8192, 9216, 10368, 11664, 13122, 16384, 18432, 20736, 23328, 26244, 32768, 36864, 41472
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (2*9)/((2-1)*(9-1)) = 9/4. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(2)*log(9)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 24 2020
MAPLE
N:= 10^5: # for terms <= N
sort([seq(seq(2^i*9^j, i=0..ilog2(N/9^j)), j=0..floor(log[9](N)))]); # Robert Israel, Mar 23 2020
MATHEMATICA
Take[Union[2^First[#] 9^Last[#]&/@Tuples[Range[0, 20], {2}]], 50] (* Harvey P. Dale, May 26 2011 *)
n = 10^5; Flatten[Table[2^i*9^j, {i, 0, Log[2, n]}, {j, 0, Log[9, n/2^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)
CROSSREFS
Subsequence of A003586.
Sequence in context: A316856 A324524 A325621 * A049439 A251642 A079931
KEYWORD
easy,nonn
STATUS
approved