This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025591 Maximal coefficient of Product_{k<=n} (x^k+1). Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0 or 1. 21

%I

%S 1,1,1,2,2,3,5,8,14,23,40,70,124,221,397,722,1314,2410,4441,8220,

%T 15272,28460,53222,99820,187692,353743,668273,1265204,2399784,4559828,

%U 8679280,16547220,31592878,60400688,115633260,221653776,425363952,817175698

%N Maximal coefficient of Product_{k<=n} (x^k+1). Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0 or 1.

%C If k is allowed to approach infinity, this gives the partition numbers A000009.

%C a(n) is the maximal number of subsets of {1,2,...,n} that share the same sum.

%H T. D. Noe, Alois P. Heinz and Ray Chandler, <a href="/A025591/b025591.txt">Table of n, a(n) for n = 0..3339</a> (terms < 10^1000, first 201 terms from T. D. Noe, next 200 terms from Alois P. Heinz)

%H Dorin Andrica and Ioan Tomescu, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Tomescu/tomescu4.html">On an Integer Sequence Related to a Product of Trigonometric Functions, and Its Combinatorial Relevance </a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.4

%H Steven R. Finch, <a href="/A000980/a000980.pdf">Signum equations and extremal coefficients</a>, February 7, 2009. [Cached copy, with permission of the author]

%H E. Friedman and M. Keith, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/KEITH/carpet.html">Magic Carpets</a>, J. Int Sequences, 3 (2000), Article 00.2.5.

%H Marco Mondelli, SH Hassani, R Urbanke, <a href="http://arxiv.org/abs/1612.05295">Construction of Polar Codes with Sublinear Complexity</a>, arXiv preprint arXiv:1612.05295, 2016. See Sect. I.

%H Robert A. Proctor, <a href="http://www.jstor.org/stable/2975833">Solution of two difficult combinatorial problems with linear algebra</a>, American Mathematical Monthly 89, 721-734.

%H B. D. Sullivan, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Sullivan/sullivan8.html">On a conjecture of Adrica and Tomescu</a>, J. Int. Sequences 16 (2013), Article 13.3.1

%F a(n) = A063865(n) + A063866(n).

%p b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,

%p `if`(i=0, 1, b(n+i, i-1)+b(abs(n-i), i-1)))

%p end:

%p a:=n-> b(0, n)+b(1, n):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Mar 10 2014

%t f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[n-1, s-n]+f[n-1, s+n]]; Table[Which[Mod[n, 4]==0||Mod[n, 4]==3, f[n, 0], Mod[n, 4]==1||Mod[n, 4]==2, f[n, 1]], {n, 0, 40}]

%t p = 1; Flatten[{1, Table[p = Expand[p*(1 + x^n)]; Max[CoefficientList[p, x]], {n, 1, 50}]}] (* _Vaclav Kotesovec_, May 04 2018 *)

%o (PARI) a(n)=if(n<0,0,polcoeff(prod(k=1,n,1+x^k),n*(n+1)\4))

%Y Cf. A039828, A063865, A069918, A063866, A063867, A083309, A083527, A086376.

%K nonn,nice

%O 0,4

%A _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 12 16:45 EST 2019. Contains 329058 sequences. (Running on oeis4.)