login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025585 Central Eulerian numbers A(2n-1,n). 6

%I

%S 1,4,66,2416,156190,15724248,2275172004,447538817472,114890380658550,

%T 37307713155613000,14950368791471452636,7246997577257618116704,

%U 4179647109945703200884716,2828559673553002161809327536,2219711218428375098854998661320

%N Central Eulerian numbers A(2n-1,n).

%C It appears to be equal to the sum over all NE lattice walks from (1,1) to (n,n) of the product over all N steps of the current x coordinate (the number of E steps which came before it plus one) times the product over all E steps of the current y coordinate. - _Jonathan Noel_, Oct 10 2018

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.

%D B. Sturmfels, Solving Systems of Polynomial Equations, Amer. Math. Soc., 2002, see p. 27 (is that the same sequence?)

%H Alois P. Heinz, <a href="/A025585/b025585.txt">Table of n, a(n) for n = 1..200</a>

%H David H. Bailey and Jonathan M. Borwein, <a href="http://www.carma.newcastle.edu.au/~jb616/oscillatory.pdf">Experimental computation with oscillatory integrals</a>, Comtemp. Math. 517 (2010), 25-40, <a href="http://www.ams.org/mathscinet-getitem?mr=2731059">MR 2731059</a>. [Added by _N. J. A. Sloane_, Nov 02 2009]

%F a(n) = sum((-1)^j*(n-j)^(2n-1)*binomial(2n, j), j=0..n). This is T(2n-1, n), where T(n, k) = sum((-1)^j*(k-j+1)^n*binomial(n+1, j), j=0..k) (Cf. A008292. and http://dlmf.nist.gov/26.14#T1)

%F a(n) = 2*n* A180056(n-1). - _Gary Detlefs_, Nov 11 2011

%F a(n+1)/a(n) ~ 4*n^2. - _Ran Pan_, Oct 26 2015

%F a(n) ~ sqrt(3) * 2^(2*n) * n^(2*n-1) / exp(2*n). - _Vaclav Kotesovec_, Oct 16 2016

%F From _Alois P. Heinz_, Jul 21 2018: (Start)

%F a(n) = n * (2n-2)! * [x^(2n-2) y^(n-1)] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x)).

%F a(n) = (2n)!/n [x^(2n) y^n] (1-y*x)/(1-y*exp((1-y)*x)). (End)

%p # First program

%p A025585 := n-> add((-1)^j *(n-j)^(2*n-1) *binomial (2*n, j), j=0..n-1):

%p seq(A025585(n), n=1..30);

%p # This second program computes the list of

%p # the first m Central Eulerian numbers very efficiently

%p A025585_list :=

%p proc(m) local A, R, n, k;

%p R := 1;

%p if m > 1 then

%p A := array([seq(1,n=1..m)]);

%p for n from 2 to m do

%p for k from 2 to m do

%p A[k] := n*A[k-1] + k*A[k];

%p if n = k then R:= R, A[k] fi

%p od

%p od

%p fi;

%p R

%p end:

%p A025585_list(30); # _Peter Luschny_, Jan 11 2011

%t f[n_] := Sum[(-1)^j*(n - j)^(2 n - 1)*Binomial[2 n, j], {j, 0, n}]; Array[f, 14] (* _Robert G. Wilson v_, Jan 10 2011 *)

%Y Cf. A008292, A180056.

%K nonn

%O 1,2

%A _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 18:38 EDT 2020. Contains 334728 sequences. (Running on oeis4.)