This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025466 Number of partitions of n into 4 distinct nonnegative cubes. 1
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,541 COMMENTS In other words, number of solutions to the equation n = w^3 + x^3 + y^3 + z^3 with w > x > y > z >= 0. - Antti Karttunen, Sep 21 2018 LINKS Antti Karttunen, Table of n, a(n) for n = 0..12121 EXAMPLE For n=540 we have two solutions: 540 = (0^3 + 1^3 + 3^3 + 8^3) = (2^3 + 4^3 + 5^3 + 7^3), thus a(540) = 2. This is the first point where a(n) > 1. - Antti Karttunen, Sep 21 2018 PROG (PARI) A025466(n) = { my(s=0); for(w=0, n, if(ispower(w, 3), for(x=w+1, n-w, if(ispower(x, 3), for(y=x+1, n-(w+x), if(ispower(y, 3), for(z=y+1, n-(w+x+y), if((ispower(z, 3)&&(w+x+y+z)==n), s++)))))))); (s); }; \\ Antti Karttunen, Sep 21 2018 CROSSREFS Cf. A000578, A025465. Sequence in context: A307721 A023976 A025469 * A072769 A322437 A322438 Adjacent sequences:  A025463 A025464 A025465 * A025467 A025468 A025469 KEYWORD nonn AUTHOR EXTENSIONS Secondary offset added by Antti Karttunen, Sep 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 16:41 EDT 2019. Contains 327311 sequences. (Running on oeis4.)