OFFSET
0,1730
COMMENTS
In other words, number of solutions to the equation x^3 + y^3 = n with x >= y > 0. - Antti Karttunen, Aug 28 2017
The first term > 1 is a(1729) = 2. - Michel Marcus, Apr 23 2019
LINKS
FORMULA
If a(n) > 0 then A025456(n + k^3) > 0 for k>0; a(A113958(n)) > 0; a(A003325(n)) > 0. - Reinhard Zumkeller, Jun 03 2006
a(n) >= A025468(n). - Antti Karttunen, Aug 28 2017
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MATHEMATICA
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[Surd[#, 3], IntegerQ]&)], {n, 0, 110}] (* Harvey P. Dale, Nov 23 2022 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Secondary offset added by Antti Karttunen, Aug 28 2017
Secondary offset corrected by Michel Marcus, Apr 23 2019
STATUS
approved