login
A025452
Number of partitions of n into 8 nonnegative cubes.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2
OFFSET
0,9
COMMENTS
a(n) = 0 only for n = 23 and 239, as these two are the only numbers requiring at least nine cubes in any partition into cubes (cf. Dickson, 1939). - Felix Fröhlich, Sep 09 2017
LINKS
L. E. Dickson, All integers except 23 and 239 are sums of eight cubes, Bulletin of the American Mathematical Society, Vol. 45, No. 8 (1939), 588-591.
PROG
(PARI) cubes(bound) = my(v=[], x=0); while(1, v=concat(v, [x^3]); x++; if(x^3 > bound, return(v)))
a(n) = my(i=0, c=cubes(n)); for(s=1, #c, for(t=s, #c, for(u=t, #c, for(v=u, #c, for(w=v, #c, for(x=w, #c, for(y=x, #c, for(z=y, #c, if(n==c[s]+c[t]+c[u]+c[v]+c[w]+c[x]+c[y]+c[z], i++))))))))); i \\ Felix Fröhlich, Sep 09 2017
CROSSREFS
Sequence in context: A322817 A194325 A300547 * A299202 A194337 A365335
KEYWORD
nonn
STATUS
approved