login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025444 Number of partitions of n into 5 distinct nonzero squares. 8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,104

LINKS

David A. Corneth, Table of n, a(n) for n = 0..9999

Index entries for sequences related to sums of squares

FORMULA

a(n) = [x^n y^5] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

EXAMPLE

a(111) = 2 via 1 + 4 + 9 + 16 + 81 = 1 + 9 + 16 + 36 + 49. - David A. Corneth, Feb 02 2021

MAPLE

From R. J. Mathar, Oct 18 2010: (Start)

A025444aux := proc(n, m, nmax) local a, m, upn, lv ; if m = 1 then if issqr(n) and nmax^2 >= n and n >= 1 then return 1; else return 0; end if; else a := 0 ; for upn from 1 to nmax do lv := n-upn^2 ; if lv <0 then break; end if; a := a + procname(lv, m-1, upn-1) ; end do: return a; end if; end proc:

A025444 := proc(n) A025444aux(n, 5, n) ; end proc: (End)

CROSSREFS

Cf. A000290, A008452, A010052, A025433, A025441, A025442, A025443, A025444, A045851, A340946, A340988, A340998, A340999, A341000, A341001.

Column k=5 of A341040.

Sequence in context: A086260 A124505 A326855 * A212619 A309162 A345197

Adjacent sequences:  A025441 A025442 A025443 * A025445 A025446 A025447

KEYWORD

nonn,look

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 07:14 EDT 2022. Contains 357231 sequences. (Running on oeis4.)