login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025441 Number of partitions of n into 2 distinct nonzero squares. 25
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,66

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

Michael Gilleland, Some Self-Similar Integer Sequences

Index entries for sequences related to sums of squares

FORMULA

a(A025302(n)) = 1. - Reinhard Zumkeller, Dec 20 2013

a(n) = Sum_{ m: m^2|n } A157228(n/m^2). - Andrey Zabolotskiy, May 07 2018

a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

a(n) = Sum_{i=1..floor((n-1)/2)} c(i) * c(n-i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020

a(n) = A000161(n) - A093709(n). - Andrey Zabolotskiy, Apr 12 2022

MAPLE

P:=proc(n) local a, x; a:=1; x:=0; while a^2<trunc(n/2)

do if frac(sqrt(n-a^2))=0 then x:=x+1; fi; a:=a+1; od; x; end:

seq(P(i), i=1..100); # Paolo P. Lava, Mar 12 2018

MATHEMATICA

Table[Count[PowersRepresentations[n, 2, 2], pr_ /; Unequal @@ pr && FreeQ[pr, 0]], {n, 0, 107}] (* Jean-François Alcover, Mar 01 2019 *)

PROG

(Haskell)

a025441 n = sum $ map (a010052 . (n -)) $

takeWhile (< n `div` 2) $ tail a000290_list

-- Reinhard Zumkeller, Dec 20 2013

(PARI) a(n)=if(n>4, sum(k=1, sqrtint((n-1)\2), issquare(n-k^2)), 0) \\ Charles R Greathouse IV, Jun 10 2016

(PARI) a(n)=if(n<5, return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2) \\ Charles R Greathouse IV, Jun 10 2016

(Python)

from math import prod

from sympy import factorint

def A025441(n):

f = factorint(n).items()

return -int(not (any((e-1 if p == 2 else e)&1 for p, e in f) or n&1)) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 0 # Chai Wah Wu, Sep 08 2022

CROSSREFS

Cf. A060306 gives records; A052199 gives where records occur.

Cf. A000161, A000290, A010052, A025435, A157228, A053866, A145393, A093709.

Column k=2 of A341040.

Cf. A004439 (a(n)=0), A025302 (a(n)=1), A025303 (a(n)=2), A025304 (a(n)=3), A025305 (a(n)=4), A025306 (a(n)=5), A025307 (a(n)=6), A025308 (a(n)=7), A025309 (a(n)=8), A025310 (a(n)=9), A025311 (a(n)=10), A004431 (a(n)>0).

Sequence in context: A088534 A178602 A216279 * A286813 A176891 A219486

Adjacent sequences: A025438 A025439 A025440 * A025442 A025443 A025444

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:02 EST 2022. Contains 358671 sequences. (Running on oeis4.)