This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025237 Expansion of (1 -x -sqrt(1-2*x-11*x^2))/(6*x^2). 3
 1, 1, 4, 10, 37, 121, 451, 1639, 6259, 23923, 93502, 367852, 1465003, 5874103, 23740276, 96503554, 394542379, 1620716251, 6687296308, 27700303510, 115152607831, 480244735171, 2008802728819, 8425318166635, 35425680021397, 149296062114181, 630526903497706, 2668194946794124, 11311786743536125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) = (1/3)*s(n+2), where s = A014432. Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)}. - Manuel Kauers, Nov 18 2008 Also, number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 1), (0, 0, -1), (1, 1, 0)}. - Manuel Kauers, Nov 18 2008 Reversion of x/(1+x+3x^2). Hankel transform is 3^C(n+1,2) [A047656(n+1)]. - Paul Barry, Sep 07 2009 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008. M. Bousquet-MÃ©lou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008. S. Capparelli, A. Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, 18 (2015), #15.8.5. Xiang-Ke Chang, X.-B. Hu, H. Lei, Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8. Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011. FORMULA From Paul Barry, Sep 07 2009: (Start) G.f.: 1/(1-x-3x^2/(1-x-3x^2/(1-x-3x^2/(1-... (continued fraction); a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k)*3^k*A000108(k). (End) Conjecture: (n+2)*a(n) - (2*n+1)*a(n-1) + 11*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011 a(n) ~ (1+2*sqrt(3))^(n+3/2)/(2*sqrt(Pi)*3^(3/4)*n^(3/2)). - Vaclav Kotesovec, Sep 29 2012 EXAMPLE G.f.: 1 + x + 4*x^2 + 10*x^3 + 37*x^4 + 121*x^5 + 451*x^6 + 1639*x^7 + ... MATHEMATICA CoefficientList[Series[(1 - x - Sqrt[1 - 2*x - 11*x^2])/(6*x^2), {x, 0, 50}], x] (* G. C. Greubel, Feb 07 2017 *) PROG (PARI) {a(n) = polcoeff((1 - x - sqrt(1 - 2*x - 11*x^2 + x^3*O(x^n))) / (6*x^2), n)}; /* Michael Somos, Sep 23 2003 */ CROSSREFS Cf. A217275. Sequence in context: A052572 A079725 A154152 * A149188 A149189 A149190 Adjacent sequences:  A025234 A025235 A025236 * A025238 A025239 A025240 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Nov 28 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 05:51 EST 2019. Contains 319415 sequences. (Running on oeis4.)